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ALGORITHMIC EQUIVALENCE IN QUADRATIC PROGRAMMING I:

A LEAST-DISTANCE PROGRAMMING PROBLEM

Richard W. Cottle and Arthur Djang

ABSTRACT

It is demonstrated that Wolfe's algorithm for finding the point
of smallest Euclidean norm in a given convex polytope generates the same

sequence of feasible points as does the van de Panne-Whinston "symmetric"
algorithm applied to the associated quadratic programming problem. Further-
more, it is shown how the latter algorithm may be simplified for application

to problems of this type.
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1. Introduction

This is the first of a series of papers which are intended to
provide a conceptual basis for the analysis and comparison of quadratic
programming algorithms. The series considers a wide variety of guadratic
programming problems, ranging from those having certain special structure
(such as the one discussed in this paper) to more general (e.g. nonconvex)
problems. With regard to these problems, the concept of equivalence between
algorithms (in the sense of generating identical solution paths) is
examined. Apart from their theoretical interest, the results developed
in this series of papers should be of interest to those concerned with
finding computationally efficient methods for solving quadratic programming

problems.

The Least-Distance Problem (LDP)

In [11,12] Wolfe introduces an algorithm for finding that point of a
given polytope having smallest Euclidean norm. The problem under con-
sideration differs from least-distance problems studied by certain other
authors (e.g. Tucker [7]), in that the given polytope is described as
the convex hull of a given point set, rather than as the intersection
of halfspaces.

In particular, let P = ,Po,...,%“} be a given set of distinct

(e,

; . N o -
nonzero points in E°. The least-distance problem (LDP) can be stated as:




minimize HXHE = XX

subject to X= LPw

g W, = 3L all W,z 0 .
k=1

As Wolfe [10] points out, problems of this type arise in applica-
tions such as the minimization of nondifferentiable functions and pattern
recognition. For problems in which m < n, Wolfe [11,12] recommends the
use of the "tableau variant" of his LDP algorithm. For problems with
m >> n, he suggests the use of other variants of the method; they follow
the same path geometrically but organize the calculations in a more

efficient manner.

Outline of the paper

Section 2 of the paper provides a brief description of Wolfe's
LDP algorithm; it also discusses the "symmetric" quadratic programming
algorithm of van de Panne and Whinston [8] as specialized to the LDP.
For brevity, the latter method will be referred to as the "S-algorithm."
Section 3 shows that the structure of the LDP permits considerable
simplification of the S-algorithm. It also examines the special structure
of the tableaux generated by this algorithm and demonstrates that the LDP
may be solved using principal pivots exclusively. Finally, the section
includes a geometrical interpretation of the tableaux elements which

is based on Wolfe's [11] analysis of the "tableau variant" of his LDP

algorithm.
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Section k4 demonstrates that the S-algorithm and Wolfe's algorithm
generate the same sequence of feasible points when applied to the LDF.
Furthermore, the S-algorithm and Wolfe's ”Lablead variant" generate the
same sequence of tableaux, provided that the intermediate tableaux
produced during the so-called minor cycles of each method are eliminated
from consideration. Since the two methods perform an eguivalent amount
of work in each minor cycle, we conclude that the S-zlgorithm and the
"tableau variant'" of Wolfe's LDP algorithm are equivalent in terms of the
computational effort required to solve the LDP.

The appendix of the paper is devoted to a discussion of degeneracy
in the IDP, and to a summary of von Hohenbalken's method [Y] for maximizing
pseudoconcave functions on polytopes. When applied toc the LDP, this method

is identical to Wolfe's algorithme.

2. Brief Summary of the Algorithms

a. Wolfe's LDP algorithm. Initially, Wolfe [1l] expresses his

algorithms for the LDP in geometric language. ILater, he puts the problems
in a tabular format and identifes the geometric significance of the
.ableau entries. For the convenience of the reader, we review the
notations and terminology used in [11].

Let @ denote a set of k column vectors (points) in Fuclidean

5 S . i ; |
n-space, E . It will facilitate our discussion tc assemble this set of

)

vectors as an n X Kk matrix, alsoc denoted Q. The affine hull of Q,

|

is the set

N




A(Q = (x € B:X = qw, elv = 1}

Hj K

= (wl,...,w ) € E'. The convex hull of Q

Ve & {1,...:1) € Ek, W i

is the set

c() = (Xe E:X =qu, ew=1, w> 0)

The set Q is affinely independent if q € A(CQ\\ {q]) is false for all

q € Q. (Note that the backward slash represents set-theoretic difference
and {(q) 1is the set with one element: q.) A point X € E" \ (0}

determines a hyperplane
H(X) = (Y € E%Y'X = X°X)

passing through X and normal to the line 0X. The notation O/H/S
means that the hyperplane H separates the set S from the origin O,
while the notation 0/S/H means that the set S 1lies on the near side
of the hyperplane H. (Wolfe does not use these notations, but he does
use the concepts they represent.) An affinely independent subset Q
of P (the given set of k points) is a corral if the point of least
norm in C(Q) belongs to the relative interior of C(Q). By convention,
a singleton is a corral.

Wolfe's algorithm consists of a finite number of major cycles,

each of which consists of a finite number of minor cycles. In the first

two flow charts below the major cycles begin at step (1); the minor
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cycles consist of steps (2) and (3). At the beginning of each major cycle,

a corral Q and the point X € C(Q) of least norm are known. It should

be noted that the solution to the problem has this form for some corral Q.
The proof that the algeorithm terminates in a solution after

finitely many steps is based upon the following facts:

1. Q 1is always affinely independent; it changes only by the deletion of

single points or by the adjunction of P. € P in step (1).

2. The number of minor cycles (if any) with a single major cycle is at

most the dimension of C(Q).

P ATl § S e e g ey e

3. The value of the objective function XPX is reduced in each major

cycle.

I, No corral can enter the algorithm more than once as the point X ds

vniquely determined by the corral (and by the previous fact, XTX

decreases from one major cycle to the next).

The tableau variant of Wolfe's algorithm (see Flowchart 2) has

the following properties:

(a/ In the step immediately following the optimality test, the point B

o

y = . ’ ; Gty Sl
for adjunction to Q is that which minimizes X P, from among those

i 8

points P, for which O/Pi/H(X).

(b) The step which finds the point of minimum norm in A(Q) (see step (2))

is accomplished by a principal pivot.

if‘
¥
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b. The van de Panne-Whinston $S-algorithm (specialized to the LDP)

We apply the S-algorithm to the following convex quadratic

programming problem, which is equivalent to the LDP: i

minimize % wTPTPw

N e
subject to ew=1
w >0

The Kuhn-Tucker conditions in tableau form are:

Wy Yy 1
1
yI PP -e 0
W) et 0 <
T

with Yi >0, wr >0, yIvg = o, Wy = 0, and Yy free. Associated with
the above initial tableau are index sets I = {1,2,...,m} and J = {mtl},
I 1is the set of indices of the basic dual variables, and J 1is the set
of indices of the basic primal variables. As the algorithm progresses,
the sets I and J will change.

The S-algorithm generates a sequence of adjacent basic solutions

of the Kuhn-Tucker equations via pivot operations, each denoted (B.V.,D.V.).

The D.V. ("driving variable") is a nonbasic variable whose value is being

*
increased; it is chosen to be the complement of the most negative basic

*Note: The variable LA is said to be the complement of the variable Yy
In this paper, a tableau will be termed "complementary" if yi%; =0

for all i, 1< i< mtl, Otherwise, if Yy > 0 for some i, the tableau

is said to be "non-complementary."




dual variable (the "distinguished variable").
The B.V. ("blocking variable") is a basic variable whose value
either decreases to zero (if the B.V. happens to be one of the basic

primal variables) or increases to zero (if the B.V. happens to be the

distinguished variable) as a result of the increase in the D.V., and hence

leaves the basis. (Basic dual variables other than the distinguished
variable are not eligible to play the role of B.V.) The pivot operation
consists of solving the equations for the new set of basic variables.

Starting from the initial tableau, the S-algorithm performs an
"exchange-pivot" or 2 X 2 principal block pivot. This yields a primal
feasible point which is a member of the set P = {Pl,...,Pm] having
minimum norm.

Denote a typical tableau TK generated by the S-algorithm (after

ne initialization step) as:

wJ yJ 1
; 5.
Y1 M 5 9y
i i B 9y

llot~ that here the set J 1is not necessarily a singleton (as it was in
» initial tableau).
Three types of pivot operations can be performed, each of which

will ensure that each successive tableau generated by the method possesses
=)

1

he following properties:




(1) Bisymmetry: After the pivot, the new tableau is of the following

b form, where MI'I' and &J'J' are symmetric:

| va Iy 1
i Mpop —3:'1- ar,
Yo MJ'I' MJ'J' iJ.

(2) Positive semidefiniteness of the matrix (and also of the

Mﬁ'J'

matrix MI'I' in the case of convex quadratic programming).

(3) Primal feasibility: q;, > O .

The S-algorithm terminates when, in addition to these properties, the

tableau is also dual feasible: §I' = aI' > 0.

The following types of pivot operations may be performed:

(a) IN-PIVOT (yt,wt> where t € I.
This 1x1 principal pivot increases #J, the number of basic primal
variables, by one.

(o) OUT-PIVOT (wg,y,) where s € J.
This 1 X1 principal pivot decreases #J by one.

(¢) EXCHANGE-PIVOT (woow ) (v, ¥y t €I, s €J.
In this 2 X 2 block principal pivot, the number of basic primal
variables remains the same, The operation is performed by making
two 1 X1 non-principal pivots. As will be shown, this type of pivot
is not required when the algorithm is applied to the LDP. (In fact,
even the initialization step, which is nominally accomplished by an

exchange-pivot, may be carried out using 1x1 principal pivots only.)

8




Convergence of the S-algorithm for convex quadratic programming
problems is established in the following menner (van de Panne and
Whinston [8]).

If some basic dual variable ¥ (t € T) in the current comple-
mentary tableau is negative, the tabvleau does not represent a minimum.

The complement of Vo name ly Wi is a nonbasic primal variable whose
value is thenincreased. One of the thiree types of pivot operations will
be performed.

If the pivot is of type (a) or (c), we get a new primal feasible
complementary solution, for which rlw) = wTPTPw = XTX has reduced value.
However, if the pivot is of type (b) (an out-pivot (ws,ys) where s € J),

the driving variable w, will be nonbasic in the new tableau, but will

t
have positive value--the value at which its increase was blocked by LA
lecreasing to zero. Thus the new tableau is "non-complementary" in the
sense that the wvariables W, and ¥ both have nonzero values. However,
‘here ran only he m such pivots of type (b) in successicn, since =ach
step reduces the cardinality of J (denoted by #J) by one, and
& ] < m. Eventually, the algorithm must generate a new complementary
solution, thus completing a "major cycle"; the value of f(w) is then
gtrictly lower than its wvalue at the beginning of the major cycle.
Assuming that each basic solution is nondegenerate, we can assert
that since there exist a finite number of complementary bases, and since
in each major cycle the value of f(w) 1is reduced, no basis can repeat--
nhence the algorithm will terminate with the solution in a finite number

of steps. (Appendix T of this paper demonstrates that the assumption of




nondegeneracy can actually be dropped for the purpose of proving that

the S-algorithm will converge to the solution of the LDP.

c. IFlow charts of the algorithms. To facilitate future reference

and discussion we have represented Wolfe's LDP algorithm and the van de
Panne-Whinston S-algorithm in flowchart form. Wolfe's algorithm has been
given in both geometric and algebraic (tableau) forms.

Tt is hoped that the reader will notice the flowcharts have pre-
cisely the same structure. This property warrants a comment. The
van de Panne-Whinston symmetric algorithm for convex quadratic programming
involves the use of 1x1 diagonal pivots and 2 X 2 block diagonal pivots.
One of the contributions of this paper is a demonstration that only
diagonal pivots are necessary when the van de Panne-Whinston S-algorithm
is specialized to the LDP problem. This fact is already incorporated
in the corresponding flowchart and is indicated there by the comment in
the lower right-hand corner of the page. To a great extent, it accounts

for the duplication of the flowchart structures.

10
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GEOMETRIC FORM OF WOLFE'S LDP ALGORITHM

INTTIALIZATION

(0 | Find a point Py € F of minimal norm.

Let X be that point and Q = {X}.

START MAJOR CYCLE with a corral
minimal norm

Q
e

and a point X ¢ C(Q) of

OPTIMALITY TEST

(L) [If X =0 or O/H(X)/P, stop: X 1is optimal,

() o

Otherwise choose Pi such that O/Pi/H(X) and adjoin Pj to Q.

(2) [Find Y, the point of smallest norm in A(Q'.
This is done by solving the system
QTQy + e\ =0

eTy =1

l and setting Y = Qy.

FEASIBILITY
TEST

Replace X

by Y.

(3)] Find 2, the point nearest to Y on the

i | line segment C(Q) N XY.
Delete from @Q one of the points not on

the face of C(Q) in which Z 1lies.

|
! Replace X by Z.




TABLEAU VARIANT OF WOLFE'S LDP ALGORITHM

Start with the (m+l) x (m+l) tableau T° = |° ez
& PP
Number the rows and columns {O,1,...,mj.
INTITTALIZATION
(o) [Let 1 = % minimiee t°(1,1) for i >oO.
Set J ={i} and let w Dbe the vector in E® such that

1 for ®=1
0 otherwise

Pivot in T° on &)

and then on (0,0), obtaining T.

START MAJOR CYCLE with an index set

Let ‘b = {150 il

J, vector w, and tableau T.

R

OPTIMALITY TEST

(1) [1If T(0,i) <0 for all i€ I_, stop: X = Pw is optimal.

R’

Otherwise, choose i € I, such that T(0,i) is maximal.

K
‘Replace F by F U]

(2) I Pivet in T ‘on (i;%)

Let y be the m-vector: N 7(0,3) for jE€J
J 0 for j €I

FEASIBILITY
TEST

Y.>0 for all

(3) s W,
Tet B =pin{—a : ¢ =y, >0
W.=Y. o J
b i
Let i

be an index for which this minimum is attained.
(1-8)w + By.
Replace J by J/{i).

Replace w by




s et o

VAN DE PANNE-WHINSTON S-ALGORITHM SPECTALIZED TO THE LDP

Start with the tableau Wy Yy il
Initially, I = {1,2,...,m) ¥y PP -e 0 Denote the constant
= m . +h
s L W, o 0 -1 column of g, and the
rest of the tableau
by M.
INITTALIZATION
(0) | Let i denote the index of the smallest element of the main diagonal
of PTP.
EXCHANGE-PIVOT (Vg2 W7 et <y2,yn+l)
START MAJOR CYCLE. The variables w. >0, j&J, and W, = 0, &le T,

are the barycentric coordinates of}the current feas

ible point X

with respect to P.

OPTIMALITY TEST

Let By = min {qi}. X = Pw is

Al > 0, stop:
i€ S

Otherwise, increase the driving variable Wy

optimal.

i

[Ratio test: Find s &€ J

max {

such that q_/m
s’ st €7

m,, > 0, compare the values of qg/mg¢

tt

> 0; see Theorem

] (For the LDP, we always have L

and qt/mtt'

qj/mjt:mjt<:0}

3.6.)

oUT-PIVOT {w ,y )
S S

Transfer the index s from J to I.
Continue the increase of the driving

variable wt.

13

4 blocks W IN-PIVOT (yt,wt)
FE Y : x ¥ Yes .
EA§§E£LITV i.e. ds m, >0 and [Transfer the index
/ ]
a /mtt > q /My from I to J.
(3) Vi, blocks the increase of v, . Note: If W 0,
£ mSS > 0, perform the the exchange-pivot

Ws,wt), (yt,ys
must be performed.
However, for the LDP

we will always have

n >0 (see
ss

Theorem 3.6,




Example of an LDP Problem (due to Wolfe [11])

Problem: minimize XTX

5 3
subject to X = 2 P w , 2w =1, w >0
0 3 -2
where P = [P P P =

The S-algorithm, applied to this problem, generates the following sequence

of tableaux:

vy LA w3 ¥y, iy The initial point having barycentric
¥y ) 0 2 G 0 coordinates w = (0,0,0) with respect
¥ 0 9 -6 -1 0 to P 1is not feasible since
V3 2 -6 5 -1 0 eTw # 1. Apply initialization step.
w), 1 il A5 0 -1

INITIALIZE: EXCHANGE-PIVOT (wh,wl\, <yl’yh)

v, ws Wy, vy il Tableau corresponds to the primal
s 13 T 2l T = feasible vertex P1 having bary-
Vs . 5 1 B centric coordinates w = (1,0,0).
yh - -2 n -1 L Increase wg, since y2 18
wl O | 1 0 1 distinguished.

IN-PIVOT (ye,wg)




v, W, ¥ Y., 1

¥ 9 Lz [ 17 -k 1t

J ﬁ

y 4o 36 | -9 -4

)

o W N SO, RS
13
W -1 { -1 4
1 1 3|
W, b L | -1 i2 L
SIS A A s St
OUT-FIVOT  (wy5¥,)
bos IR S W 3

) L7 .-(;\4 g .-9

Jl 15 L S

V= 17 26 -15 | 1 -15

yy -9 =15 91-1 9

W, P 4 =1 1§ 0 1

IN-PIVOT ({y., vy )
' ;
wl Wh 72 y3 L

[ % | B 2Ly ¥ 1Y 2%
b w | qf 22 9]-11 -15 9
b f <% w9 b 1A 11
{ e
l} 9

W, -17 15} -1 i o 15
|3 | .

l'ableau corresponds to the
with w = (9/13,4/13,0)
y, is distinguished,

is made to increase

blocks.

After the out-pivot, w3, though
nonbasic, has the value 9/17

tat which its increase was
blocked in the previous tableau).
Hence this tableau corresponds
to the point S with

Continue

w = o, &/¥1, 9/27).

the increase of w

5"

Since y; 20 for 1€ 1,

terminate with tableau
corresponding to the solution

Iy having w = (0, 11/26, 15/2t

Wolfe's LDP algorithm,applied to the same problem, generates the following

sequence of points:

15
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& Point

Coordinates of X

Barycentric coordinates w of

X in E2 Value of XTX X with respect to P
: P ( 0: @) { %, 0, 0)
o 18 36 ¢9 4
R S 3 13 13 3 ©)
5.k 6
3 0, 0 = .
b 2 117 8 B
8 (T 37 569 (o, =7 17
. 3 35 2 A ¢
X (éﬁ’ 57 26 (o, 26’ 26
By ]
R
: f- §
’. 3
3
P
& o

16




3. Analysis of the S-algorithm applied to the LDP

a, Initialization

This section examines the structure of the tableau cbtained by the
initialization step of the S-algorithm. The tableau is shown to correspond
to a point of P having minimum norm. In order to develop these results,
we need to introduce the following concept.

Consider a linear system of the form w =Mz + q.

Definition. The tableau representing the system is said to possess the

duplicate column property with respect to the variable Zs if it can

be rearranged into the form:

W q M

Q

Lemma 3,0, Consider any tableau having the duplicate column property

respect to 24 Assume that some nonsingular submatrix of M exists,
=nd that a block pivot is performed on this submatrix. Then the resulting
tableau also has the duplicate column property with respect to the

varia ia
iable 23

Proof: The result follows immediately upon partitioning the matrix M

and the vectors w and 7z in an appropriate manner and performing the

plock pivot. |




We now examine the S-algorithm as applied to the LDP:

¥ ot J oo
minimize Z w P Fw
[

subject to erw =1, w>0.
The initial tableau is as shown in Section 2b of this paper. Recall
o & : . :ym c i
that the variable Wl 1S defined by Wl T H4o1 Yy 1, and that i is
the index of the smallest element on the diagonal of PEP. (The S-algorithm

resolves ties for the choice of this index arbitrarily.) The following

result describes the effect of the initialization step.

Proposition 3.1. Assume that the S-algorithm is applied to the LDP.

Vs

(1) As a result of the initial exchange-~pivot <Wm+1’ WE>, (yg, : I

A

(i € 1), a tableau is obtained which has the duplicate column
property with respect to Wkl
(2) This tableau corresponds to a point P of P having minimum norm.

(3) All subsequent tableaux generated by the S-algorithm also possess

the duplicate column: property with respect to w

L The variable,

LAY having left the basis in the initialization step, never returns.

18




= ’ 3 e [
Proof': The starting tableau, T , is:

¥ ’ Im+) x
s
1 M = )
¥y b . % + T
N =
Yy 1’11 MPQ e 0
T
wm+l ik e 0 -1
Assume that m is the smallest element on the main diagonal of
i 4
. LR
12552
M
Ml 22

The initialization step calls for an exchange-pivot <wm+l,wl), (yl,ym+l},
which is of course equivalent to a block principal pivot on the nonsingular

submatrix

11

[}
&

As a result of this pivot, a new tableau, Tl, is obtained. It is easily

verified that this tableau has the duplicate column property with respect

to LR Furthermore, it corresponds to a primel feasible point Pl
having coordinates w = (wl,wﬂ,...,wm) = (1,0,...,0) with respect to the
o

set P. By our choice of m 4 it follows that Pl is a point of P

of minimum norm, Since Pl is feasible, the initialization step of the
algorithm has been completed. (In the more general case of convex
quadratic programming, the S-algorithm may require not one but several

exchange-pivots to locate a primal feasible point.)

19




Starting from tableau Tl, the S-algorithm will perform a sequence
of principal pivots, Lemma 3.0 implies that all subsequent tableaux \
generated by the S-algorithm will have the duplicate column property with

respect to w

k1 Of course, this holds true only if the variable w

mtl
never becomes basic after the initialization.

BRI En i ——-

To show that the latter condition is satisfied, observe that
any tableau generated by the S-algorithm corresponds to a primal feasible

point (i.e., w > 0, and Z?:l w, = 1). Hence in each such tableau, we

must have L Z?=l . e 1 = 0. By definition of the vector y,

V1 = PTPW - y. Applying the conditions of primal feasibility and

*
complementarity,

T-T F £

= (wTe) = w P Pw - wTy = v PPy =X%>0

Yimt1 Y1

We conclude that, in any tableau generated by the S-algorithm, Yot

must be basic and its complement w must be nonbasic. l ¥

m+1
Remarks.
1. The initializing block pivot on

o P

1 0

may be interpreted as a restriction of the guadratic form to the

linear manifold determined by the constraints ¥, = 0 and Wbl = 0

iy \ . i
(i.e. ew = 1). This yields a primal feasible basic solution with w, > 0.

‘
Note. A similar argument is employed for the case of "noncomplementary"
tableaux.

20




2. The wm+l

the "O-row" and "O-column' described in Wolfe's statement of his

-row and the ymkl-column are (but for a sign change) precisely

algorithm [11]. Wolfe points out that "once having been pivoted in,

the [Oth row and column] are not used again for pivot choices."

0 r
3. 1In proceeding from T to Tl, the pivot seguence (yl,wl),

o oY

<wh+l’ym+l> could alsoc have been used, since m, >0 and since
the appropriate pivot element of the intermediate tablesu will be
positive. This corresponds to the pivot sequence employed in Wolfe's

method.

b. Structure of the tableaux generated by the S-algorithm

The main result of this section is a demonstration that when applied
to the LDP, the S-algorithm performs only 1 X 1 principal pivots; no
"exchange-pivots" are necessary. This result is based on certain algebraic
properties of tableaux under principal pivot operations, some of which are

reviewed below.
Definition. Given any scuare matrix M, the nullity of M is defined by
n(M) = order M - rank M .

Now consider the homogeneous linear system represented by the tableau:




The following result, due to Keller, shows that the nullities of the
blocks MII and MJJ are invariant under principal transformations

(i.e., sequences of principal pivots and principal rearrangements).

Theorem 3.2 (Keller [h?, p. 22). Suppose that a principal transformation

is performed on the tableau shown above. Let the new tableua resulting

from this transformation be represented as:

WI' yJ'
JI' P-A_[lli M:[VJ!
Mt Uipe LITRT
& § o
Then n(MI'I" n(MII)
and
a(f_, ) =n(M )
g J

Now, suppose that the S-algorithm is applied to the LDP. The

original tableau, TO, may be written:

e -e

o 1s)




Associated with this initial tableau are index sets 10

and JO = {m+l). Let

Observe that M, o = O. rank(’y ) = 0, and #3” = 1. Tt follows that
JJ JJ

0

0] T T
n(MOO O) = 1. Similarly, we have M 5= F'P, rank M, , = rank P'P = rank P,

J d I 1L

and #I, = m. Hence n(MOO O) =m - rank P. These observations enable us to
T I

prove the following result.

Corollary 3.2.1. Let Tableau To be the initial tableau for the LDP.

Let Tk be any subsequent tableau generated by the S-algorithm, and suppose

it is represented as:

Then Tableau Tk has the following properties:

(1) The matrix

MII

MJI

e




is bisymmetric, i,e. the blocks MII and MJJ are symmetric, and
it

7 = _MJI' Furthermore, Mk is positive semidefinite.

[ i —
(2) nullity (MJJ) =

M

\ T =
(3) /J = rank Moo 1

(4) det M__ =0

JJ
(5) MJJ is symmetric and positive semidefinite
(6) If #I =1, then M =0 (scalar).
Proof:

(1) The matrix Mk is a principal transform of the original matrix MO,

i.e. it is obtained from MO by a sequence of principal pivots and principal
rearrangements. Observe that MO is a bisymmetric matrix and that it is
positive semidefinite since PTP is. By results of Cottle and Dantzig [2]
and Tucker and Wolfe (cited in Parsons [6]), the properties of positive

semidefiniteness and bisymmetry are preserved under principal transformations.

(2) In the initial tableau TO, we have n(MOO O) = 1. By Theorem 3.2,

J Jd
n(MJJ) =1
(3) By the definition of nullity and the fact that n(M ) = 1, we must
have #J = rank M.y * L.
(4) By part (3), rank MII = order MJJ - 1. Hence MJ] is singular and

det My = O.




(5) This follows from the fact that MJJ is a principal submatrix of

the bisymmetric and positive semidefinite matrix Mk.

(6) If 4J =1, we must have rank M . =0 by part (3) above. Since

J

the order of M,  is 1, it follows that M,; =0, i

The following l.emma and Corollaries describe the structure of

the tableaux in grester detail.

Lemma 3.35. Let

T T 1
R°R -8 A M
R™Q a wll 1o Ml§
w=| or @B -e - M M M
Sy 21 Do 23

e e 0 MBl sz M35

where €& and e are both column vectors of l's, though possibly of

different dimensions. Suppose

f‘T( =
Q Q e M23 Mg5
N = "
eT 0 M )
e B

is nonsingular. Ilet

4

M z M

e e

M= MEl o 14?3
iy M M
B B s

be the principal transform of M obtained from a block pivot on the sub-

matrix N. Then

n
N3 |




\ T- AT
(1) e M:‘l = -8
(g) eTl\-ﬂ,),:‘ = OT
Te
(3) e M?5 = 1.
i
|
Proof. We have ;
“Q  -e B, E, SR
II'I e = rIl
i
- 9 N P LA |
%
Therefore:
y A =
() gam, - eMBe =
(5) Qo «el,, =0
LS Moy = sy
: T - = T
\ A =
(6) e ‘Jbe + 0 MBQ 0
T >
) =
(1) e 1\/{23+0M53 1

Equations (6) and (7) are just (2) and (3). To verify (1), we compute:

My > Mo Moy <QTR> "MezQTR y M’a}éT
L = - L) = A’T_‘ = sy T E T
iy My, 2 M, 0'R - fiy8

'rom (2) and (3), we have i

=i

which is (1). i
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Corollary 3.3.1. Let the tableau Tk be obtained from the initial tableau TO
by a principal transformation., Suppose that Tk is written as:
\ W Yy i 2
+ <3
IR m+l J ﬁ
v M ! S M B’
- g Telr Igomtl dally Lpalivl
T T
‘ -M M
ym+l MIR,mﬂ_ Mm+l,m+l 1«_5’,m+l 1mf-l,m*rl
A = ] |
A
¢ {j bt MJ,IR M5 el M M el

where the index set I. is defined as Iy = I\ (m+1), #lp =1, #=r+l,
e,

and #J = £ = m-r. Let e = (1,1,...,1)T €EE and € = (1,1,...,1)T € E.

4y P
1 —
(1) e MJ’IR 8

T R
(2) e My, =0

iy = 1 <
Bl e MJ,m+1

)

Proof: The initial tableau T may be written:

WIP e I+l :
- R°R RYQ -8 ¢
i
R
!
Q'R ”TQ -e Qo
¥y 2 QQ |
ki T
wm+1 e e 0 -1
where IR = (130 evmyl ] J = {rtly PERy Gew 3 iy R = [P1 P2 &y Pr]
and Q = [Pr+1 . Pr+9 Shaly Pm].
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- : k 2 >
To obtain tableau T, a block pivot on the matrix

q W -@

must be performed. The required result follows directly from Lemma 3.3. I

~

The following result is a special case of the preceding Corollary.

Corollary 3.3.2. Suppose that some tableau Tk generated by the S-algorithm

possesses the property that #J = 1. Then the tableau must have the follow=-

ing structure:

WI wh+l yJ +
R
¥y M M e :
I, 7 I, ml MIR, m+1
I
Y1 M§R, w1l Yp mtl = M) mtl
T
J WJ -e 1 0 1

Proof: In this case #I =m, 4#I m-1, and #J = 1, Therefore, using the

R:
notation introduced previously, we must have m = r+l, and £ = m-r = 1,
Hence the vector e 1is just the scalar 1. The result follows immediately

from Corollary 3.3.1. l

Corollary 3.5.3. In the above situation (i.e. when tableau Tk has the

property that #J = 1), if the current solution X = Pw 1is not optimal,

then the next pivot to be executed by the S-algorithm must be either an in-

pivot or an exchange-pivot,




Proof: Suppose on the contrary that an out-pivot were to be performed.

In the resulting tableau, it will hold that #J = O, and hence w, = w,

1 2
& sae W W ® 0. However, we alsc have Wok) = Z?zl Wy 1=0,a
contradiction, |

Corollary 3.3,4. Starting from a tableau having #J > 1, at most #J - 1

consecutive out-pivots can be executed by the S-algorithm.

Proofs Follows from Corcllary 3.L.3 and the fact that each out-pivot

decreases #J by one. |

The following observation on positive semidefinite matrices is

found in a paper by Cottle [1]:

Lemma 3,4, If M is a symmetric and positive semidefinite matrix and if

mg =0 for some k, then m, =m =0 forall i £ k.

The next theorem deals with the case in which the index set J

has cardinality greater than 1.

Theorem 3.5. Let Tk be a tableau genersted by the S-algorithm in which
#J > 2. (Refer to the diagram in the statement of Corollary 3.3.1.) Then
the symmetric positive semidefinite submatrix MJJ has positive elements

on its main diagonal.
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Proof: Recall that M is a matrix of order /. By Corollary 3.2.1(5),

Jd
M]: is symmetric and positive semidefinite. By part (3) of the same
Corollary, rank MIJ = order MJJ - 1= f-1. Now suppose that more than one
. oew . 5 = o8 \' ._. 7,'14
of the diagonal elements of MJJ is 0, say m g mgp ¢ Using Lemma %.4,
we have:
0 -0 0 e 0
0 0 o 0
MJJ = 0 0 m35 e mBZ
0 3) m51 .. mll

Thismatrix must have rank less than or equal to £-2, which contradicts the

£+ = -
fact that rank MJJ £-1.

The only remaining possibility is if one of the diagonal elements

of MJJ is zero, say mll' Then
0 0 ; 0
R
Mi5 = : .
(8] m2£ oo s ml£
By hypothesis m??’ mﬂ}’ " mll are all positive. Also, rank W.; = el

Hence the submatrix
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has rank £-1 and is thus nonsingular, But by Corollary 3.3.1, eTMJ = oT,

J
e T -
Therefore eTM = 0 where e = (1,1,...,13T. But this contradicts the

nonsingularity of M. We conclude that my >0, i.e. all of the main

diagonal elements of M., are positive. '

We now state the main result of this section.

Theorem 3.6. After the initialization step, all successive pivots performed
by the S-algorithm are 1x1 bprincipal pivots. Thus no "exchange-pivots"

are necessary when the S-algorithm is applied to the LDP.

Proof: Let w, Dbe the driving variable in the current tableau. Either yt

(the negative basic distinguished variable which is the complement of w_

%
blocks the increase of Wy by increasing to zero, or else some wS
(s € J) blocks the increase of W, by decreasing to zero.
Case A: If y, 1is the blocking variable, then clearly m , = Byt/awf > 0.
Hence, the in-pivot {yf,th may be made.
Case B: If w (s € J) is the blocking variable, and #J > 2, Theorem 3.5

S

guarantees that m__ > O. This permits the out-pivot {ws,ysb to be made.

Consider finally the special case where #J = 1. The tableau will
then have the structure described in Corollary 3.3.2, and it will correspend

to the primal feasible point P_. Since m__ = O, an out-pivot is clearly

S sS

impossible here. Furthermore, an exchange-pivot (ws,wf), (yf,ys\ is also

impossible, for it would yield a new tableau corresponding to the primal

S




feasible point Pt’ which has a higher objective function value than P_.

S

(The fact that PS is a point of minimum norm in P 1is guaranteed by
the initialization step.) We conclude that if #J 1, the next pivot to
be executed must be an in-pivot, and that Yy must be the blocking

variable. i

Remarks

1. We have shown that, apart from the initialization step, no exchange-
pivots in the S-algorithm are necessary. However, by Remark % following
Proposition 3.1, the initialization can in fact be accomplished by two
1 x 1 principal pivots (rather than by an exchange-pivot). Thus, the

S-algorithm can find the solution of the LDP by using 1 ¥ 1 principal

pivots exclusively. 1

e

Zoutendijk ([13], pp. 80-86) examined principal pivoting methods for

solving linear complementarity problems of the form:

T j L -Pd y xy = 0y x>0, 5> 0.

These relations constitute the Kuhn-Tucker conditions for the problem:

L L 2
minimize Z [|[d - Pyl

o

\
(&

subject to y >

reometrically, this problem may be stated: Given a set of points

: = = & N ! W, « SN g
P = {Hl,:h....,rm? in E and a point d € E°, find the point closest
to d in the convex cone generated by P. In the context of this problem,

Z

Zoutendijk proved results which are roughly analogous to Theorems

and 3.6 of this paper. He also suggests a number of different algorithmic

procedures to resolve degeneracy.
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3., An algorithm for finding the point of a finite cone (with given
generators) nearest to a given point has been published by Wilhelmsen [10].
In a footnote, Wilhelmsen remarks that the algorithm can easily be modified
to apply to convex polytopes and then it becomes identical to that of

Wolfe [11,12].

c. Geometric interpretation of the tableaux elements

The following propositions provide a geometric interpretation of
the elements in the successive tableaux generated by the S-algorithm.
They are reformulations of Propositions l-4 of Wolfe [11].

Assume thaf the current tableau Tk is given by:

WI wm+l uJ i
R
M M MT M
Y1 ' T +
I, % Ip,mtl I, Ig I, mtl
Yy M M —MT M
mt+l m*l,IP m+1l,m+l J,m+1 m+l,m+l
M M VL M
b P‘J,IR J,mt+l JJ J,m+1

As before, T = I_ U/ {m+*l) 1is the current set of indices of the basic dual

R

variables, and J is the current set of indices of the basic primal

variables.

Proposition 3.7. The elements of the vector M, -
Joy

of the current feasible point X in the set Q = {Pi:j € J}.

€

are the coordinates
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Proof: We have X = Pw where

W
e R
W
k
In the tableau T corresponding to X, however, w_ 1S nonbasic. Alsc,

‘p

by the duplicate column property or the tableau, the wvalue of the basic

variables w._ is given by M Hence
)

R
w = = > 0
W M
J J;m+l
by feasibility. By Corollary 3.5.1,
m 1
, :
W, = =1 .
3 i e MJ,m*l ' ‘
i=1

Remark. After each out-pivot is performed, we obtain a "non-complementary"
tableau in the sense that w.y > 0 for some t € I. In such a

tableau, the values of all primal basic variables w. (j < J)
J

must be modified to be qj i mitg’ where 5 1is the value at which the

driving variable w, (now nonbasic) was blocked in the previous tableau,

and qj = M, 1 Furthermore, the nonbasic driving variable w_ is
. Ja - L

assigned a positive value » in the "non-complementary" tableau.




Proposition 3.8.

(1) In a complementary tableau, the element M gives the current
m+l,m+l

m rJ’: ! { -
value of Vo ? which is equal to w P Pw = XFX (where X = Pw 1is the

1385

current primal feasible point).

(2) In a non-complementary tableau, the following identity holds:

2

t5)

2
1% = v PP = M

m+l,m+1 e

+
G ymtl. Mtt
where 5 is the value at which the increase of the driving variable LA

t € Iq, was blocked; M,r is the component of the vector
3 <

m+1 MIR)m+1

corresponding to the variable yt; and Mt is the corresponding diagonal

t

entry of the matrix MI 7
RR

Proof: These results may be readily demonstrated using the approach of
van de Panne and Whinston [8], who adjoin a row representing the objective
function to the Kuhn-Tucker tableau and then perform a principal trans-
formation on the augmented tableau. Alternatively, the proposition may

be proven directly, using Corollary 3.3.1. l

Proposition 3.%. In a complementary tableau, the value of the element
p Y Y

(i€ IR? is Pfx - XFX, where X = Pw 1is the current primal

M.
i,m+1l

feasible point.

Proof: Consider the initial tableau To shown in the proof of Corollary
%2.3.1. Perform a block pivot on the submatrix
QlQ -e

e 0]




A straightforward calculation shows that in tableau Tk,

II‘ Pa

n » s M

= RTQM. . -eM .
MIR,m+l « J,m+] “m+l, mtl

Hence the ith component of this vector is just

b8 i
M = B § - " ]
1, mtl 1My i1 ™ M, e
- PO - XX
2
by Propositions 3.7 and 3.8. |

Corollary 3.9.1. 1In a complementary tableau, the absolute value of the

element M is [

1 | times the distance of P, from the hyperplane
i,m+l 1 i g

=, 7 T

H{Z) = (Y27 X ¥ = 1%} If P, lies on the neer side of H(%), the

element Mi will be a negative number; hence in this case we take

,mtl

the sign of the distance to be negative.

Proof: Let Y denote the projection of P, onto H(X), i.e. the point

of H(X) nearest to 2 Since X is normal to H(X), Y-Pi =X for
. P By " ok e L P
some scalar . Premultiplying by X # O yields XY - X'P, = X' X.
Al b apat e 1 S
But since Y € H(X), X°Y = X'X. .Hence we have:
m
X - X°p,
3t
i = "_——711
i
Now the distance of Pl from H(X) is:
[ |
e = 2l = laxl] = lul il
Hence
|.( v o ! . |“X 2 o, i (’l—X <& \(T 1‘3 %
{2 Y = = ) = [ XX ~ X P, M.
e - 2 = Ll = Ll | .
by Proposition 3.9.
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T ———————N

Finally, observe that if P, lies on the near side of H{X) then
T i : 3 Lice 3

PPX <« XX, In such a case M, s BPEE - XK J, and SO

3 i,mtl L

M, = =|Ixll-lly - B,

tmer = -IINY - 2yl I

Proposition 3.10. Let Q = {P.:j € J}. Define the point wi to be the

J
: -

projection of the point P. onto the affine hull AQ) = {Z:Z = Qu, eu=1},
where 1€ I = I\ (m*l}. Then:

"

. . 3 d 1 . i n .

(1) For i€ IR’ the ith row of the matrix -M_ _ gives the coordinates

Ty 1p

u of the point wi with respeect to the set of points Q. In other words,

(- ], =uF and W. = Qu .
J,Ig 4. i
(2) The entry M, . (i e IR\ on the main diagonal of N%wlu equals

the square of the distance of P, from A(Q).

Q) may be formulabted as:

fa =3

(1) e problem of projecting P. onto
(1) Th blem of jecting P, 5

1A

(]
minimize [|[P, - Qu||, subject to eu = 1. As shown by Wolfe [10],

necessary and sufficient conditions for a solution fic this problem are:

o - ok

1]
L

b
J

ik
e u =1

Employing the notation of Lemma 3.3 and Corollary 3.5.1, we have

-1
il i = - !
u Q Q - P. M M Q P,
E B < b T2 Th3 P
'I‘ -
A e 0 1 M,, M. h
32 e




However, it can also be

T T. = = I d
-M "= R™QM  eM R™OM + eM.
J,IR IP? D3 = J,mtl
: : e U - ; T - 1
The ith row of this matrix is clearly identical to u . Now, setiting

W, = Qu yields the projection of P. onto A(Q).

(2) Using Lemma 3.3 and Corollary 3.3.1, we obtain:

m m
A5

T T T T N
= R'R - R R - M S
MIR’IR R'R - RQM,.Q RQM; o q@ .

=
=3
3

QR + &M
i m+1l,m+]

The (i,i) diagonal element of this matrix reduces to

M,. = PP, - P-qu - Piqu + Ww, = (P, - W) (P, -W,) =B, - Wl
TR SIRF 2 i b i i i i

L. Equivalence of the algorithms

To show that the S-algorithm and Wolfe's LDP algorithm generate
the same feasible points, we need to demonstrate that the corresponding

steps of the two methods achieve identical results.

el

Assume that, at some iteration of the S-algorithm, a basic

K 5 s X
complementa tableau T has been obtained, corresponding to a primal
2 b

feasible (but not optimal) point %%, Such a point is denoted by Wolfe
k\

o

as a point of minimum norm in the convex hull C(Q of a certain corral

%8




Suppose that the tableau has the following structure:

LA Ci ] ¥s I ]
/ e e
M M M . -M -r(" 1
yL tt = AP S st T4 tamtl
T {
R - , ) Dl g e
i y M I i { !
T It EF I,mtl sT 7T I,m+1
v 5 31 1 -M M M
m+l tymtl R 1,m+] s,m+] 1 m+1l,m+1l
\ LM %1 ko
M M M M I .
L st = S,m+l ss s,m+1
T sS4
w M M M M M M
d It i J,m+1 Js JI J,m+l

wvhere I = {(t}JUIU (m¥l)=1I_U {m*l}, and J = {s}UJ. Let g
denote the constant column.
The feasible point X corresponding to this tableau has

barycentric coordinates w. =0 and w.> O with respect to the set of
> 4 o

R
; points P. In Wolfe's terminology, the current corral @ is composed
of the points P, and (P.:j € J).

Without loss of generality, we may assume that the most negative

basic dual variable is y,, which has the value M < O. Hence the

w

S-algorithm does not recognize the current point X as being optimal.
T r

. A 5 ¢ - C < Sk
By Proposition 3.9, M, T *t( -X X, so PX <X X . By Theorem
bt :
i m
2.1 of Wolfe [11], X is the solution of the LDP if and only if XTP‘ > X

step 1 of Wolfe's method determines whether this condition is satisfied.

Thus, in this case the current feasible point X  would be found non-

optimal by Wolfe's method.




e . MR - s M A U A S Yo MY >

In this situation, an attempt is made in the S-algorithm to

increase LA (the complement of the distinguished variable yt). By

Lemma 3.4, it follows that M, >0 (for if M =0, then M, ., = 0,
contradicting the assumption that M < 0
t,m+1l
A preliminary ratio test is then performed to find an index s

such that

(238
ﬁ—- = max ﬁi— G M.t <0
st jeJ it 9

In the notation of the above tableau, we have

M M,
+ -
Sl i for all j € J for which M < O.
st Jt J
Since Ms - ws > 0 by the nondegeneracy assumption;* it follows that
2
M
s,mtl
—Tﬁ—_'< () =

st
The next step of the S-algorithm is to determine whether the basic

variable first blocking the increase of W£ (i.e. attaining the value of

zero) is y, or w_. To accomplish this, two ratios are compared, namely
t s

M M
t,m+l <0 arid s,m+1l

Mtt Mst

*
See Appendix I.

T —




There are two cases to consider:

Case A. Suppose that

M M
t,mtl | s,mtl
M = LN :
1 ot
Lt st

Then blocks the increase of w before -(or simultaneously as)
1 + Bl Y

ws decreases to 0. (The S-algorithm always resolves blocking ties in
favor of the distinguished variable vy,.) In this situation, the in-pivot
c . = .y it .
(y+,wt) is executed to yield a rew tableau T corresponding to a
: k+1 : ; el . e ’ .
point X which is primal feasible. As will be shown, that is precisely

the same pivot as is performed in Step Z of the tableau variant of
Wolfe's LDP algorithm.
k+l ‘ s .
In the tableau T resulting from the in-pivot, the basic

primal variables are Wy Wy and w , and their values are given by:

'T,
L% )
M
it tymt+1l
17 M
iEa
M « M
W <r t,m+l st
S S 8,mtl M.,
t\—
M q
t,mt+l T4
W M 1 AR S e e e RO
N
s o v
J,m+l “tt

; k+1 ’
In Wolfe's terminology, the new corral Q s composed of the points
- K+
P, Ps, and {Pj:J € J}. The new feasible point X has barycentric
coordinates Wy Wy and w with respect ft the set of points ;K l.

U o &




To demonstrate the fact that the two algorithms generate the

K+ . : -
same point, it must be shown that X 1 is identical to Y, the point

-
of smallest norm in A(Qk 1), and furthermore that X € rel int C(ngl).

Since the ratio test indicated that an in-pivot was possible,

+
the point Xk * Pw must be primal feasible. Hence w > O and eTw =3
in particular, wt i W, + Zj€5 wj = 1. Assuming nondegeneracy, all of the
+ - \
barycentric coordinates of Xk * are positive. Hence Xk * € rel int C(Qk+1).

k+l)

Now, let Y be the point of smallest norm in A(Q - Y can be

determined by solving the problem:

minimize ||Q,u|[2 subject to e'u =1, where Q= Qk+l.

Substituting the point O for the point Pi in the proof of Proposition 3.10,

we find that the barycentric coordinates of Y with respect to the set

Qk+l are given by:

1y
= +
u MJJQ Pi MJ M

,mFl . J,mél

But the vector M represents the current values of the basic variables
)

J,ym+l
w
t
w
S
w
J
3 el = . = 3
in Tableau T , since J = {t} U (s} UJ. In other words, M is

J,ymtl
- ; . k+1 3
the vector of barycentric coordinates of the point X with respect

+
to the set of points Qk 1.




B s 8 IR o - - ; K+l
Since Q is an affinely independent set, any point in A(Q )
: : A e b AL
will have a unigune barycentric representation with respect to @ .
k+rl i : ; S
Because X and Y have the same barycentric coordinates, namely
: . , L * - Jeakd ' L
MJ e u, they must be identical. Hence the point X obtained
M
after an in-pivot of the S-algorithm is indeed the point of minimum norm
: (K+L I ; k+l
in A(Q ), and furthermore, X € rel int c(qQ ).

Case B. Suppose the ratio test indicates that

M, M
tymt+l o _s,mtl

N )
Ttﬁ '4st

Then, LA blocks the increase of LA (i.e. decreases to 0) before

y increases to O. In this case, the S-algorithm performs
t ’

k

the out-pivot (ws,yc> in the tableau T . As a resulf, a new tableau
=
3 . : ey - : cas et
is obtained which we denote as T (to avoid confusion with T
considered in Case A). TFor the purpose of the proof. the relevant porticn

¥4
of the tableau T is given by:

W =S i )
%
M M
M, M
= M - 2%y o L osgmtl
= - M = L M L
J Jt ss Jds Jymtl ’ss Js
. et e}

*
Tableau T is "noncomplementary" in the sense that the driving variable

w,, although nonbasic, has a positive value 5: the value at which its

t’
increase was blocked by w_. The value of » 1is determined by the ratio

test to be:

T T——

o e ep————




*
Since Wy has the value & 1in tableau T , the values of the basic

primal variables w must be adjusted accordingly:

J
M M
v win aEw lsawm --—Sﬁ-milu
J Jt ss Js J,m+1l ss Js
M +1
& _s_‘,_m__M-_'_M i
Mst Jt F,ml

* *
Let Q@ = (P} U {Pj:j € J}, and let X be the primal feasible point
*
corresponding to the new tableau T . Then the barycentric coordinates
* *
of X with respect to the set Q are given by
"%

w

J

¥*
where wy has the value 5 > 0 specified above. Since X is feasible,

we must have

"
—
.

and w +ZJ. W,

t

Q)
<
[

Ll




To summarize the notation used here, we have:

Qk = {PS} U {Pjrj € J) = original corral corresponding to tableau Tk
Xk = original feasible point corresponding to o
+ ps, 8 UL -
Lo pyUPI Uy D)
t s 3
R T L , k+1
= corral obtained by adjoining the point Pt to § by means
¢ SR k
of an in-pivot in T .
3 ; % ISR . :
Y = point of smallest norm in A(Q . As shown in case A, this
< - : - y k
point would have been generated by an in-pivot in T had
the ratio test permitted such a pivct.
Q ={P,)U(P:jED
L =15 j.J ]
* : s / ; ¥
X = point generated by an out-pivot ‘ws,y_) % 5 Sk e

Finally, define Z to be the point nearest to Y on the line segment

’5+ \ . ~ . .
c(Q" L nx®y. The point Z is calculated in

m

tep 3 of Wolfe's LDP
method, To demonstrate that the S-algorithm arrives at the same point
L=} L 2

‘.
it suffices to show that Z =X . Thus, there are three facts to be

proved:
¥
(1) £ eca™
L=
(2) % € x5y
v iy
(5, Any movement from X toward Y along the line segment XkY

; : . ’ . : k+l
will result in a point which is exterior to Q@ .




*
To prove that X can be expressed as a convex combination of

Xk and Y, we must show that O < A <1 in the equation:

X = (10 + %y .

This equation can be rewritten in terms of the barycentric coordinates

*
of the points X , Xk, and Y with respect to the entire set

P = [P_, Pt’ Ps’ P_]. Using facts established earlier in this discussion

I J
we have:
— w- -1 [- O o=
%
M
v, __s,m+l
Mst
w 0
s

w _Dsagmt]:M + M

B e 3t J,m+l |
E D 4 7 0 T
M
0 _ t&m+l
tt
M M
= (1-2) M A _ _t,mtl st
s, m+l s,mt+l M
tt
My w1
Jt
M_ M_ - T
J,m+l J,m+1l £t
L i 3 d

Solving this vector equation for ), we obtain

R Mtt > ¥§Lm+]
Memir Mgg

L6




A is positive since My, >0, M <0, M, . >0 and M__ <0

<
t,mtl S, mtl

v

by hypothesis. Furthermore, the outcome of the ratic test indicates that

> M i i jes th =t
hence Mt,m+1Mst MttMs,nwl‘ which implie hat A < 1, We conclude

* P e i = *
that X = (1-A)X + MY with O0< A< 1, i.e. X can be expressed as

= .
a convex combination of X and Y. Also, since X & C(Q ) and
5% + =2l E k+1,
Q < @l it follows that X € c(q¥*l).
It remains to verify fact (3), In the vector equation above,

note that the value of the w_-coordinate as a function of A is given by:
=

M M M oM
: t,m+l st .  G,mtl st
= (1=N\} - A —4+——= - ——_——
o (1-n Ms,m+1 g }\Ms,mﬂ_ A M‘cf Ms,nri-l Mt"c
- * )
If A=) we have w_ =0. For feasibility (i.e. X € C(Qk*l\), we
require that w_ > 0. Setting
% - pmry Mot 4
‘s, m+1l W -
implies that A < h. IhA other words, any increase in ) beyond the

value  will result in an infeasible point,
To complete the equivalence proof, it must be shown that the

critical value N\ is in fact identical to the value 2 determined

in Step 3 of Wolfe s LDP algorithm. This step caleculates the ratio:

W,
8 =min { =t : w,ay, >0
oY 33
J

L7




where w denotes the barycentric coordinates of Xk with respect to
P, and y denotes the barycentric coordinates of Y with respect to

P. But these coordinates are just:

F 0 9 [ 0 b
M
0 d ;:,dzm+l
5
w = and y =
5 " M Mot
s, m+l s,m+1l Mtt
Mt,m+1'M3,g
M M coons yiqtiamiea
J,m+1 | | Jm#l tt ]
Thus,
=] =3
- - t,mtl st t,mtl "~ 3t -
= Se— e
6 = min Ms,m+1 ——L——Mtt , min Mj,m+l Mtt s J € d

By the ratio test,

M M
3, mt) & -
s, mtl > LT por all JE J for which M., <O,
M N jt
st Jt
Since tt/Mt g = 14 follows that
N -1 -1
t m+1 Mst <M Mt m+1 Mw’t Por il h i
s m+l —L-—— S My el —-’—-——‘-—Mtt r such j.
Hence -1
M M
3=M t,mtl st
s, m+1 Mtt




which is identical to the critical value A calculated earlier. We
conclude that in Case B, the S-algorithm and Wolfe's LDP algorithm

generate identical primal feasible points. '

Remark. The only difference between the two algorithms lies in the
fact that the S-algorithm first performs a feasibility test (namely, the

ratio test) to determine whether an in-pivot or an out-pivot shcould be

executed. The former the start of a new major cycle; the
latter case corresponds to a minor cycle, Note that all tableaux

generated by the algorithm correspond to primal feasible points.

The tableau variant of Wolfe's LDP algorithm, on the other hand,

first performs the in-pivot, then performs e test to determine whether
the point Y corresponding to the new tableau is feasible (i.e., lies
EEL.

int C(Q ). If so, the algorithm begins a new major cycle.

t is possible for the in-pivot to generate a tableau corres-

A
b

to a point Y which is infeasible. 1In this case, it is then

necessary to enter a minor cycle (step (3)), which involves calculating
5l tio 8 and setting the new point egual to (1-8)X + 8Y. As

as been shown, this minor cycle achieves the szame result as does the

out-pivot step of the S-algorithm. Thus, although the two methods

ge
=

nerate different tablcauxin their respective minor cycles, the

seaquences of primal feasible points determined by the two algorithms
are identical. This point is illustrated by applying the two algorithms

to Wolfe's example:

L




T ——

Example.

Assume that we start from the feasible point R having barycentric L

coordinates (9/13, L/13, 0). The corresponding tableau is:

w3 v, ¥, Y5 il
Vs b9 Lo 17 =4 =42
¥y 1 k2 36 -9 -k 36
Wil S ] 9
W, L el 1 L, L
S-algorithm Wolfe's LDP algorithm
Increase the driving variable wB. Without regard to feasibility,
Ratio test shows that Wy blocks. perform the pivot
5 ( y
OUT-PIVOT (wy,y,) | (¥3, )
Wy w5=6 v, ¥, 1 W), ¥y Y, y5 1
¥1 13 1y -9 1 -9 i 0 21 =28 <l 0
Vs g 26 =15 1{] =15 vy 1] -2 26 -9 =17 || -21
¥y, -G =15 9 =1 a W, 9 28 -9 5 L 28
W), -1 -1 1 0 1 vy ko 17 L 15 Lo
w5 has the value 5 = 9/17. This tableau corresponds to
Adjusting the values of the the infeasible point O with barycentric
variables w this tableau coordinates (=3/7, 4/7, 6/7).
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corresponds to the point S Calculate & 2173 Computing

with barycentric coordinates (1-8)R + 60 yields the point 8.

(0, 8/16, 9/17). Continue the Since & 1is attained for the index

increase of w,. Ratio test i =1, perform the pivot

J

shows that Y3 blocks,

-PIVOT (y,,w.)




The preceding results may be summarized as follows:

Theorem L.1.
(1) When applied to the LDP, the S-algorithm of van de Panne and Whinston
and Wolfe's LDP algorithm are eguivalent in the sense that they

generate the same sequence of primal feasible points.

(2) Furthermore, the successive tableaux generated by the two methods
are identical, except during certain iterations in which Wolfe's
algorithm produces a tableau corresponding to an infeasible point.
In such cases Wolfe's method performs a minor cycle to restore
feasibility; this step achieves the same result as does the corres-

ponding minor cycle in the S-algorithm,

(3) Both the S-algorithm and the tableau variant of Wolfe's method rely
exclusively on 1 X1 principal pivots in solving the LDP. The same
principal pivots are executed in both methods, although possibly in

different order.

Remarks.
1. van de Panne and Whinston [8] showed that in the case of convex quadratic

programming, the S-algorithm generates the same sequence of primal feasible

]

points as does the "asymmetric" algorithm due to Dantzig [3]. Since the LDP
is a special case of the convex aquadratic programming problem, Wolfe's LDP

algorithm is also equivalent (in the sense described above) to Dantzig's

method applied to such a problem.

e




2. From the computational point of view, the S-algorithm and the tableru

variant of Wolfe's algorithm are also equivalent. The "duplicate column"
property and the bisymmetry of the tableaux generated by the S-method
imply thsat (m+l)g/a storage locations are required.

It might appear that performing a minor cycle (step (3)) in
Wolfe's method (which involves calculating a parameter 7 and determining
the new feasible point as a convex combination of Ak and Y) entails
additional computational effort beyond that regquired in the S-algorithm,
This is not the case, however, since the latter algorithm performs the

equivalent computation of the ratio test and the adjustment in the values

of the basic variables after an out-pivot has taken place.




Appendix I: On degeneracy

In order to guarantee that the S-algorithm will solve the LDP
in a finite number of pivot steps, it is not necessary to make the non-
degeneracy assumption (i.e. the assumption that in every tableau, the
basic primal variables are all strictly positive).

To see this, suppose that the current tableau Tk has the
structure depicted in the first diagram of Section 4. Assume that the

current complementary solution is not optimal, and that £ is the most

negative basic dual variable (so that M, sy < 0). Now, contrary to
)
the nondegeneracy assumption, suppose that MS gt 0. (The other
basic primal variables comprising the vector M_ may be taken to
J,mt+l

be positive.)

The ratio test of the S-algorithm will determine that

M

M
tmil | s,mil

Meg e

O

Hence "Case B" obtains and an out=-pivot must be executed on the element

3
Mss' (Mso is positive by Theorem 3.5.) The resulting tableau T , as

indicated in the discuss’on of the preceding section, will have:

M

w_ =M __Tsdgﬂ:“_l_M =M SR
S J,m+l ss Js J,mk?

Hence, a zero-valued basic barycentric coordinate (basic primal variable)

in any tableau may be "removed" by making an out-pivot.




- 0 s it e s A Tl AN I s i o Sl

If several basic barycentric coordinates in a given tableau have
the value zero, it will be necessary to perform a sequence of out-pivots.
Corollary 3.5.3 sets an upper bound on the number of such pivots that
can be executed. Eventually, either of two cases must arise:

(1) The cardinality of J is 1 and the tableau has the nondegenerate
structure described in Corollary 3.3.1, or

(2) The cardinality of J is greater than 1, but the ratio test
indicates that an in-pivot should be performed. This, of course,
happens only if all of the basic barycentric coordinates are positive,

i.e. the tableau is nondegenerate.
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Appendix II: von Hohenbalken's method

In this section, an algorithm due to von Hohenbzlken [ 9] for
maximi~ing certain pseudoconcave functions on polytopes is considered.

It will be shown that this algorithm, when specialized to the LDP, is
identical to Wolfe's method.

In the following description of von Hohenbalken's method, the
notation employed in section 2 of this paper will be used. In addition,
certain maximization problems will be converted to equivalent minimization
problems for the sake of clarity.

Following the initial step, the algorithm continues with a
sequence of major cycles, each of which begins at Basic Step 1. Let

Qk be the affinely independent subset of P at major cycle k, and

let X* be the minimizer of £f(X) on C(Qk), where X© belongs to
the relative interior of C(Qk). (Thus, Qk is a "corral" in Wolfe's

terminology. )




”"""""!!-"'-""""""'-'-!!!!!!!!llllIlllllIllllllllll-llu-llln‘ull'

VON HOHENBALKEN'S ALGORITHM

SPECTALIZATION TO THE LDP

Initial Step

Find an extreme point of the
feasible region, In general, this
is accomplished by solving a linear
program, Denote this extreme point
(the superscript
refers to the cycle nwiber). Go to

basic step 1.

In the case of the LDP, without
loss of generality we may take this
extreme point to be one having
minimum norm; it may be denoted by
P;. With this choice, the same

starting point is selected as in

get X = 7.

Wolfe's LDP method. i

Go to basic step 1.

Basic Step 1.

get X° = xF,

Use linear programming to

determine an extreme point X of

the feasible region that solves:

min{Vr(XE)TX.X 1s Peasible)

Optimality test:
(a) 1¢ vex®)T[xx*] = o,

stop: Xk is optimal.

) 1r 7#E5Txx%) <o,

go to Basic Step 2.

N
g

In the case of the LDP, it is
unnecessary to use linear programming
to solve the minimization problem of

this step, since the problem is just:
kT
min 2X X
XsC(P)

which is equivalent to:
T
min Xk 128
P.eP
1

This computation is equivalent to
determining an extreme point Pj

as that point on the near side of
T T

the hyperplane H(ka ={Z:Xk Zuts Xk}

having greatest distance from the

hyperplane. But this is precisely




VON HOHENBALKEN'S ALGORITHM SPECTALIZATION TO THE LDP

the step taken in Step 1 of Wolfe's

method (see Wolfe [11, pages 10 and

231).
i In the case of the LDP, X 1is
just the extreme pcint Pj which

i
Sy k
minimizes X Pi' Hence the ex-

pression in Basic Step 1(a) is
s i
equivalent to EXk Pj -2Xk Xk==0.

The algorithm terminates, therefore,
T i

if et P,. In this case

| Xk is the optimal solution of the

LDP. Note that Wolfe's method
employs the same optimality test:
; Theorem 2-1 (Wolfe [11]) states that
X 1is optimal for the LDP if

XTPj > XTX for all 3.

N 9
e 7f(xk)T[x-xk] <0 (d.e.
KT X k k
IF X P <X X )then X isn

clearly not optimal and the method

continues.

5




VON HOHENBALKEN'S ALGORITHM SPECTALIZATION TO THE LDP

Basic Step 2

There are two cases: When the method is applied to
2 k
(a) If £(X) < £(X"), set the LDP, case (a) will never occur,
k+ =
il Recall that the starting point Pa 1
k+1 G i
Q = {X} , was chosen to have minimum norm, i
and go to basic step 1. i.e, PE Pa < ngi for all 1,
i, i
A Kk Hence, X =P_. and xt = Pa,
(b) If £(X) > £(X), J i
K ~ we must have: |
augument Q by X ’
to form a new affinely G = P?Pj > PEPA = XlTXl ='f(Xl) I
i1

SHASREREETk Buteh R So case (b) clearly occurs here,

fa ke Bashc shar . Now, let Xk be the feasible point

available at the beginning of major

cycle k., It is clear that

£(x%)

ik
Xk Xk < PEPA < P?Pi, all i

ol

]

~

Since X must be one of the points
P,, it follows that £(X)>£(x"),

i.e. case (b) occurs here as well,




VON HOHENBALKEN'S ALGORITHM

SPECIALIZATION TO THE LDP

Basic Step 3

Attempt to find a minimizer
Y of f(X) on the linear manifold
A(Q).
(a) If such a point Y exists
it satisfies £(Y) < £(x5).

Go to basic step L.

(b) If f does not have a
minimize on A(Q), find its
minimizer ¥' on A', where
A' is the linear manifold
through 2 and parallel to
AQ) nAQY).

Go to basic step 5.

This is identical to step 2 of

Wolfe's LDP algorithm.

Alternative (b will never
arise in the case of the LDP
because f(X) = X% wiit always

have a minimizer on the manifold

A(Q).

Basic Step 4

The barycentric repre-
sentation of Y on A(Q) is
Y = Qw*, where the columns of @Q
are certain extreme points of the
feasible region.

There are two cases:

€0

In the case of the LDP, we have

Q= {Pl’Pg""’Pj]’ and thus
* *

i + P i + P
Qw = lel 2w2 oo jwi‘

Note that w§ > 0.

¥

"

J




VON HOHENBALKEN'S ALGORITHM SPECTIALIZATION TO THE LDP

*
(a) 1If wy >0 foralli=1,...,J, This is identical to step 2(C)
then Y Dbelongs to the relative |of Wolfe's LDP algorithm (the

interior of C(Q) and minimizes |feasibility test).

£ ‘on G(Q).

get X5 -y, :
k+
@ =g

and go to basic step 1.

*
(b)  Ef w; <0 for some i, i £ 3,
then Y ¢ rel int C(Q).

Go to basic step 5.

Basic Step 5

Intersect the boundary of In the case of the LDP, we
= | ~ ~ ~
C(Q) with the line segment X'Y. msy write Z=PW +P,* et P

Let the intersection point be

7 = Q. [

The point Z satisfies This step is identical to
£(2) < f(Xk), and will have step 3 of Wolfe's LDP algorithm,
ﬁi >0, all i, with %j >0 and provided the stipulation is made
at least one ;i =0 for 41 # 3 in von Hohenbalken's method that

Drop the vertices from only one point may be dropped from
Q that have 7’1 =0, to get Q during basic step 5.

a reduced affinely independent

set a.
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VON HOHENBALKEN'S ALGORITHM

SPECIALIZATION TO THE LDP

There are two cases:

(a) T£ ¢(q) is zero-dimensional

(i.e. contains only a single

point}, set Xk+l = 7,

k+1

Q Q,

and go to basic step 1.

(b) If C(]) has positive

dimension, set

go to basic step 3.

Assume that case (&) occurs,
i.e. C(Q) consists only of the
point 7. von Hohenbalken's method
will return to basic step 1 and
test point Z for optimality.
Wolfe's method, on the other hand,
will first determine that Z is
the point of smallest norm in
A(Q) (since @ 1is a singleton
this is the only possibility),
and then return to step 1 for the
optimality test.

It is clear that the steps
taken by the two methods are

identical, The same holds true if

case (b) occurs.

The preceding observations may be summarized as follows:

Proposition 5.1.

Suppose that von Hohenbalken's algorithm is applied to

the LLP, with the following stipulations:

(1) The starting point is chosen to be a point of P of minimal norm, and

(2 In basic step 5, only one point at a time may be deleted from the set Q.




Then every step taken by the algorithm is identical to the corresponding

step of Wolfe's LDP method,

Remark, It follows that von Hohenbalken's algorithm generates the same
sequence of primal feasible points as does the van de Panne-Whinston
method applied to the LDP. The extent to which this observation may be
generalized to gquadratic programs of a more general nature is under

investigation.
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